Nitrogen distribution and 15N natural abundances in particle size fractions of a long-term agricultural field experiment

Author(s):  
Martin H. Gerzabek ◽  
Georg Haberhauer ◽  
Holger Kirchmann
Geoderma ◽  
2012 ◽  
Vol 177-178 ◽  
pp. 39-48 ◽  
Author(s):  
Michael Tatzber ◽  
Michael Stemmer ◽  
Heide Spiegel ◽  
Christian Katzlberger ◽  
Claudia Landstetter ◽  
...  

2001 ◽  
Vol 67 (9) ◽  
pp. 4215-4224 ◽  
Author(s):  
Angela Sessitsch ◽  
Alexandra Weilharter ◽  
Martin H. Gerzabek ◽  
Holger Kirchmann ◽  
Ellen Kandeler

ABSTRACT Soil structure depends on the association between mineral soil particles (sand, silt, and clay) and organic matter, in which aggregates of different size and stability are formed. Although the chemistry of organic materials, total microbial biomass, and different enzyme activities in different soil particle size fractions have been well studied, little information is available on the structure of microbial populations in microhabitats. In this study, topsoil samples of different fertilizer treatments of a long-term field experiment were analyzed. Size fractions of 200 to 63 μm (fine sand fraction), 63 to 2 μm (silt fraction), and 2 to 0.1 μm (clay fraction) were obtained by a combination of low-energy sonication, wet sieving, and repeated centrifugation. Terminal restriction fragment length polymorphism analysis and cloning and sequencing of 16S rRNA genes were used to compare bacterial community structures in different particle size fractions. The microbial community structure was significantly affected by particle size, yielding higher diversity of microbes in small size fractions than in coarse size fractions. The higher biomass previously found in silt and clay fractions could be attributed to higher diversity rather than to better colonization of particular species. Low nutrient availability, protozoan grazing, and competition with fungal organisms may have been responsible for reduced diversities in larger size fractions. Furthermore, larger particle sizes were dominated by α-Proteobacteria, whereas high abundance and diversity of bacteria belonging to the Holophaga/Acidobacteriumdivision were found in smaller size fractions. Although very contrasting organic amendments (green manure, animal manure, sewage sludge, and peat) were examined, our results demonstrated that the bacterial community structure was affected to a greater extent by the particle size fraction than by the kind of fertilizer applied. Therefore, our results demonstrate specific microbe-particle associations that are affected to only a small extent by external factors.


Author(s):  
T. K. Makarova ◽  
N. N. Maksуmova ◽  
G. V. Нapich ◽  
I. V. Chushkina

The article reveals the issue of redistribution of particle-size fractions in ordinary low-humus leached chernozem on loamy loess in the condition of Northern Steppe of Ukraine affected by the irrigation with II class water and chemical melioration with phosphogypsum. Rather long use of water for irrigation from the reservoir on the Samara River in the Dniprovskyi district of the Dnipropetrovsk region deteriorated the soil properties due to salinization development in it, which led to the use of phosphogypsum. The calculated application rates of phosphogypsum 1,4 t/ha, 3 t/ha and 6 t/ha were applied along with irrigation and without it. The effect of chemical melioration and irrigation on the ecological and ameliorative condition of soil that resulted in the change of its particle-size composition, bulk density and structure was studied. It is established that irrigation of the soil with an average irrigation rate of 1500 m3/ha reduces the content of physical clay by 0,12-0,06% compared to the options without irrigation. When applying phosphogypsum along with irrigation there are minor changes in the redistribution of particle-size fractions: an increase in the fractions of physical sand and a decrease in the fractions of physical clay. It was determined that the particle-size composition of soil is more resistant to the effect of phosphogypsum rather than to the effect of irrigation. In non-irrigated variants when applying chemical melioration with phosphogypsum, the content of physical sand increases by 0,54-0,91% compared to the reference variant and the content of physical clay decreases by 0,87-1,13%. With increasing the rate of phosphogypsum, the content of physical sand also increases. The effect of improving the structure and loosening of the soil is observed in the variants where phosphogypsum at the rate of 6 t/ha was applied under the main tillage and at the rate of 3 t/ha under spring cultivation.


Sign in / Sign up

Export Citation Format

Share Document